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CONTROL OF TORSIONAL VIBRATIONS BY PENDULUM MASSES™

By Albert Stieglitz’

Various versions of vendulum masses have been devel-
oped abroad within the past few years by means of which
resonant vibrations of rotating shafts can be eliminated
at a given tuning. They are already successfully employed
on radial engines in the form of pendulous counterweights.
Compared with the commonly known torsional vibration damp-
ers, the pendulum masses have the advantage of being
structurally very simple, requiring no internal damping
and being capable of completely eliminating certain
vibrations.

Unexplained, so far, rcmains the problem of behavior
of pendulum masses in other criticsl zones to which they
are not tuned, their dynamic behavior st some tuning other
than in resonance, and their effect within a compound
vibration system and at simultaneous application of sev-
eral differently tuned pendulous masses.

These problemg are analyzed in the present report.
The results constitute an enlargement of the scope of ap-
plication of pendulum masses, especially for ian-line
engines. Among other things it is found that the netural
frequency of a system can be raigsed by means of a corre-
spondingly tuned pendulup mass. The formulas necussary
for the design of any practical version are developed,
and a pendulum mass having two different natural frequen-
cies simultaneously is described.

I. INTRODUCTIONW

The present investigation deals with the torsional
vibrations of rotating shafts under the effect of pendulunm
masses, which have been added for the purpose of eliminat-
ing ‘the daingers of resonant vidrations. The pendulously
linked masses are subjected to the centrifugal forces of

*1Beeinflussung von Drehschwingungen durch pendelnde
Magsen." Jahrbuch 1938 der Deutschen Luftfahrtforschung,
rp. Il 164-178.
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the rotary motion which exert restoring forces on the
vibratory motion of the pendulum masses.

Both Taylor's (reference 1) and Salomon's (reference
2) system of pendulum masses are based on the resonance
principle in the same manner as the conventional resonance
dampers. But, while in the latter the mass is coupled by
springs or gravity with the system and so attains a cer-
tain constant natural frequency, the natural frequency of
the pendulum mass restored by the centrifugal forces var-
ies with the rotative speed, hence changes its dynamic
behavior fundamentally.

Resonant dampers with constant natural frequency
remove the vibrations in one critical speed, but permit
the creation of a new critical zone above and below this
speed, the damping of which requirecs an internal damping.
Resonant dampers have been known for a long time. As
early as 1895, Pollak (reference 3, p. 911) employed a
flywheel disk fastened to a shaft by means of rubber bush-
ings of a specific size for the purvose of reducing the
shaft vibrations, and by so doing, undoubdbtedly, applied
the resonance principle. In 1908 Schuler's resonance
principle (reference 3, p. 845) had become known and ac-
cepte€d. In Frakm's antirolling tank of 1911 (reference 4)
a water mass coupled with the ship by the centrifugal force
is tuned to the same natural frequency as that of the ship.
In the same ‘year (1911), EKutzbach (reference 4, pp. 451
and 703) developed the damper shown in figure 1 on which
a fluid mass in the U-shaped channel of a flywheel is re-
stored by centrifugal forces. This device itself repre-
sents a forerununer of the pendulum masses of Taylor and
Salomon. Howeversthe dynamic relations were not explored
in detail at that time, nor was the method further followed
up, pProbably because there were no demands for such dampers
then.

The vpendulum mass is a means of eliminating dangerous
vibrations, which, by virtue of its effectiveness and sim-
plicity surpasses any other known damping device, and
merits much greater attention. While, for instance, with
one of the known dampers (resonant damper, friction damper)
the vibrations are, at best, reduced to the static deflec-
tion corresponding to the exciting force, the vibratioans
of a one-mass system can be completely eliminated by one
or more pendulum masses. The shaft then revolves like a
rigid shaft without being alternatingly stressed, notwith-
standing the alternating forces acting on it. The pendulum



s

P

P S N

j
|
!

¥
’
"
a
x

o

N

2

eep

[

NACA Technical Memorandum No. 1035 3

masses are not sudjeet to wear in ovneration nor to varia-
‘tion:in tuning in addition to being insusceptible .to dis-
placéments of the.natural frequencies of the system.

This principle has been utilized successfully in a
device employed on the U. 8. Wright-Cyclone radial air-
craft engines. The already existing counterweight serves
as pendulum mass. A Hispano~Suiza radial engine and-a
Peugeot automobile engine in France are also said to have
been fitted with peandulum masses. Further applicatioans
of pendulum masses to other automobile engines or station-
ary plants are not kunown. The reason for this lies in
their comparative newness and insufficient knowledge of
their mode of operstion. Apart from that, there is the
matter of patents.

Taylort's studies extend to the case of a two-mass
system with a simple pendulum mass. He deduced the nat-
ural frequency of the pendulum mass and the resultant tun-
ing at a certain mode of excitation. But his premise for
the general motion of the pendulouns mass is wrong. The
result for the general case is not discussed further.
Salomon used a flywheel eguipped with penduvlum rollers.

The general formula is develope¢d only for the case of res-
onance of the pendulous roller. The natural frequencies
for several forms of pendulous masses and their deflections
in resonance are calculated. Both Taylor and Salomon treat
only the case of resonance of the pendulous wass, but fail
to touch upon the subject of how this mass really acts in
othér critical zones.

In the followiug an-attempt is made to explain, in a
very general fashion, .the phenomenon accompanying the mno-
tions of pendulum masses. The study is extended to include
any compound-mass system. Besides the resomnant tuning of
the pendulum masses other cases of tuning are dealt with,
which, as will be seen, are.often much more of practical
importance. The different types of pendulum masses are
analyzed and the necessary design data indicated.

II. PROCESS OF INVESTIGATION

DI

The investigation was carried on with very simple

equipment. Only small vibratory deflections o are pre-
sumwed,- at which it is always possible to put sin o = o,
cos ©® = 1. The error involved is practically iansignificant
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in most cases, when it is considered, for instance, that
the natural frequency of a gravity pendulum at deflections
up to +220 diverges only about 1 percent from the value
for small deflectious.

The system subjected to torsional vibrations, performs
a uniform rotary motion together with a superimposed vibrat-
ing motion. When applying the centrifugal forces at the
individual pendulous masses, the rotary motion can for the
present be disregarded. The attendant Coriolis component
of acceleration due to the concomitant vibrating motion is
negligible, since it 1is small at small deflections compared
with the centrifugal forces of higher order. Then, if the
mass forces of the oscillating motion are applied to all
the masses the vibratory motion itself can be disregarded
and the system 1s completely at rest. The task is thus
reduced to a static problem and merely iavolves bringing
all forces in the proper phase into eguilibrium at the dif-
ferent points, so that all the dynamic¢ relations can be
secured. This simplifies the study considerably and makes
for a clear representation of the processes. This method
has Dbeen previously employed by the author in his article
titled: M"Torsional Vibrations in In-Line Engines® (refer-
ence 5), which also contsins a detailed description of
the method.

In conformity with the available data on pendulum
masses, the case of a system with one degree of freedon
and a simple pendulum mass is treated first. The forced,
damped vibrations of this system are analyzed for differ-
eat tuning of pendulum mass and different modes of excita-
tion, and subsequently the general case of a pendulum mass
attached at some point of a compound-mass system. Practi-
cally every important case of pendulum mass is mathemati-
cally worked out. Lastly, a pendulum mass with two natural
frequencies comprising two different modes of torsional
vibrations simultaneously is discussed.

The excitation is assumed constant over the entire
rotative speed range. If an excitation increasiang with
the square of the rotative speed is to be used as basis,
such as approximately occurs on an Otto-type of aircraft
engine, all the deflections obtained are merely changed
proportionally (w/we)a- This is secondary for the opera-
tion of the pendulum masses. The motion of the pendulum
mass is, in addition, assumed to be frce from friction.,
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III. ONE LINK VIBRATION SYSTEM WITH ONE PENDULUM MASS

It is to be noted veforehand, that the subject
treated in this chapter is also contained in the general
solution of the subsequent chapter; nevertheless, this
simple case is to bo treated by itself as introduction
and continuation of the already existing research data.

Visualize a vibrating system (fig. 2) consisting of
a flywhecl mass of moment of inerftia '@ ald a Shaft w1th
spring cosistant €, having a point-pendulum mass io
with- lergth of pendulum s, linked at distance r from
the axis of rotation. Then visualize the systcm built in
at A into an infinitely large flywheel and rotating with
it at aan angular speed Q. The flywheel mass @ can be
replaced, as indicated in figure 3, by a wmass m at dis-
tance (r + s) from the axis of rotation, wheredby © =
a(r + s) Then the longitudinal vibrations of the masses
on the c1rcumference of the circle with radius (r + s) can

be investigated for small deflections instead of the tor-
sioual 'vibrations.

Considering, next, the mass m of the system as non-
vibratory and applying the centrifugal force F = mj, (r+s)Q®
on the pendulun mass 1,4, the mass m, 1is re»tored by the
force F(e - Y) after a vibratory deflection 1, according
to figure 3. An identical force is applicd at m as

counterforce in opposite dlrectlon (See appendix 1. )
Then .

@(r + )

='€S
€ - Yy = % ¥, hence
2y : 2 :
Fe- V) = mp(r + )0 S ¥ =col D,

where b-= y{r + &) is the longitudinal deflection of
mass m, corresponding to the angular deflection V.
The restoration of mg relative to m therefore takes

place with a spring stiffness coQ which varies propor-
tional to the square of the Totative speed, .whereby
co = mg L. Then the original system of .figure 2 can be

s

replaced by the simple nonrotating two-mass system of fig-:
ure 4, that differs from a commnonr two~mass system merely
by the spring stiffness coQa increasing with the speed




6 NACA Technical Memorandum No. 1035

of rotation. By spring constant ¢ or cg 0® is meant
the stiffness, that is, the force reguired for the de-

flection 1, not the spring action which forms the recip-
rocal value of it.

The natural frequency wWwgo, ©0f the pendulum mass in
comparison with the static mass of the system then is

2

a co 0
weo =

Mo

according to which the natural frequency is proportional
to the rotative speed. The ratio weoﬁﬂ ig designated
with q and termed the tuning of the pendulum mass,
since it governs the behavior of the pendulum mass. Thus
the tuning of the pendulum mass is, in the present case

(2]

(1)

Q
l
o |9

Now the system of figure 4 is to perform forced
damped vibrations under the effect of a harmonic excita-
tion P sin @t acting on m., The amplitude of the msss
m is a, that of mass m, is ag, and the relative
deflection is ©b. The system has natural damping; the
damping force acting conversely to the speced on m is
put at ka, that is, independent of the freguency, as
most closely approached by a material damping. Then the
work of hysteresis is proportional to the sqguare of the
material stress.

Applying all the forces, including the mass forces
in the correct phase, affords the force diagram of figure
5. The excitation P is to have the phase B relative
to the oscillating deflection a. The formation of this
diagram can be envisaged as the actual vibratory motion
being superposed by an exactly identical vibratory motion
shifted by a difference of phase of 90° relative to the
former in respect to space and time. Herewith all vibra-

tory motions become simple circular motions with rotational

speed @, the forces assume constant values.

The equilibrium conditions of all forces yield the
three equations:
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2

2
mg apg W co b

]

]

i 2 2
c a PcosB+coQ bDPH+mawl| - (2)

X a=>P gin B

which suffice for the determination of the three unknowns,

a, ag, and B, whereby b = ay, - a. With
p = w/Q mode of excitation (that is, = 1, 2, 3, 4, . .
for two cycle)(= 4, 1, 14 . . . for four
cycle)

'2 agy = P/c static deflection of the mass 'of the systen
f% z = k/c damping, that is, the ratio of dawping force
I; to spring force

E vV = a/ast magnification

.é wea = c/m natural frequency of the system

i

B

the foregoing equation (cf. apvendix 2) aftfords the follow-
ing solution in dimensionless form:

The magnification is

1

= a == .

gt 2 0 ) .
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The relative deflections of the penduvulum mass are
according to appendix 2: '
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b= ___ 2 ~ (5)
R .
a  (a/p)° -1

Putting mgy = 0, that is, omitting the pendulum mass,

leaves the conventional resonance curve of the common one-
mass system

1l
Y EEONEE

with the resonance peak Vmax =

that the effect of the pendulous mass on the system is
simply founded on a displacement of the natural frequency
from we toward we'.

vV =

N -

. The comparison indicsates

For the practical importsnt case of g = p, called the
resonant tuning of the pendulous mess, wg! =0 and 7V = 0,
In other words, the mass of the system no longer executes
deflections at all within the entire rotative speed range.

-The deflections of the pendulous mass in this instance
(cf. appendix 3) are

————

l o= b (&)

or in other words, the mass force of the pendulous mass )
mod w® holds the exzcitation P in equilibrium and cancels
it to a certain extent.

This case is reminiscent of the known phenomenon of
the double pendulum and of the elastically Jjoined dynamic
vibration absorber tuned to resonance with which the de~
flections of the system can be reduced to zero for & spec-
ified freguency. But, while this additional mass is in
resonance at one certain rotative speed only, the above
tuned pendulous mass is in resonance at every speed of ro-
tation, because its natural frequency is proportional to
the rotative speed. The pendulous mass therefore adapts
itself to the particular type of excitation of a power
plant, at which the frequency of exzcitation itself is pro-
portional to the rotative speed.

For other cases of tuning, figure 6 shows the displace-
ment of the natural frequency sccording to equation (4),
and figure 7 several selected resonance curves. The
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relative deflections b/a -can be read off from figure 12.

The resonance curves were plotted for Po= 1 and z= 1

[

m : 15
that is, where the pendulous mass is the fifth part of the

mass of the system and the damp1ng force amounts to 6.5
percent of the spring force, giving & resopance amplifica-
tion of V = 15. These figures are approximately correct
for the conditions in a radial engine. TFor tuning % < 1

the natural freguency diminishes, fof' P.> 1 it increases.
In the range p/g =1 to 1.1 or generally for any 2o
. m

et et e e

m
within rangé of p/q =1 to p/a = v/l + -2 1o resonance

occeurs (see the curves for p/q = L, 1.05,n;nd 1.095 in
fige 7)., although the system executes small deflections
inferior to those of the static deflection. Mathematical-
ly, this case can be represented by visualizing the normal
resonance curve continued into the zone for (w/wg )

in which it progreSalvelJ drops from V =1 for uyag = 0
te V =0 for (ﬂ/we) . This zonme happensS here to
lie in the normal rotat1ve apeed range.

At only one harmonic excitation of & specific order
acting on the mass does the case of resgnant tuning in a
one-mass System at which the deflections are zero, become
of imwortance. (On the multimass system still other tun-
ings are of interest, as will be shown elsewhere.) But,
if several harmonic forces of different orders are active
simultaneously, or in other words, if some periodic force
acts exciting on the system, two different tunings of the
pendulous mass are concurrently in existence, since the
pendulous mass can be tuned to only one order of resonance.
In two-stroke cycle engianes, for instance, all whole num-
bered, in four-stroke cycle engines all half numbered
orders of excitations are possible in addition. Concern-
ing the behavior of the pendulous mass in such an event
and the resultant vibrations of the system, a glanece at
figure 4 shows that the system for a given rotative speed
does not differ in the least from a common two-mass system,
and the deflections caused by the individual harmonic¢ ex-
citations are undisturbedly superimposed. Since the indi-
vidual orders correspond to different pendulum wass tuning,
every order has a different natural freguency: the syssem
has a different natural vibration frequency for every or-—
der of tuning. Thec procecdure consist in defining the res-
onance for the particular order and the subseguent super—
pos8ition of the individual curves.
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A responance curve of a system involving several crit-
jcal resonance points will undergo & displacement of such
points because of the pendulous mass, where by appropriate
tuning one can be completely eliminated. The amount of
displacement is largely dependent upon -the value my/m,

the displacement being so much greater as the pendulous
mass i8 greater in comparison with the mass of the system.
Figure 8 is a schematic view of the resonance curve of a
one-mass system embodying three critical speeds of rota-
tion, that is, with and without a pendulous mass tuned to
the second order, which approximately corresponds to the
conditions arising in a single—cylinder two-stroke cycle
compression-ignition engine; mo/m is again assumed egual
to 1/56. The critical of the second order disappears, that
of the third shifts slightly upward, that of the first
downward. ’

IV. ARBITRARY VIBRATION SISTEM WITH

) ARBITRARY PENDULUM MASSES

Visualize & pendulum mass of the type of figure 2
fitted at some point O, consisting of any chosen number
of masses and forming part of some torsional vibration
system, as in figure 9. This pendulum mass, at point O,
is to participate on the rotary motion of the system of
angular speed (L

In conformity with the foregoing arguments, the open-
dulum mass can be replaced, amecording to figure 4, by =2
mass with the stiffness cg%2% flexibly coupled to the sys-
tem 8o as to form the substitute pendulum m=ass of fisure
10, consisting of two masses m;, and m,, the former
rigidly connected with the system, the latter coupled
across the spring COQB. Subsequently, it will be shown
that any.kind of pendulum mass (till now,only a mathemat-
ical pendulum has been considered) can be represented by
this two-mass substitute.

The natural frequency of the mass wm, relative 1o

the hypothetical static mass m, 1is

2
2 co £
eo —————

Ly



!

-

I-

T g -

A

T

=78

iic e

haddec oI
s T

oy
T ek R

AT

A AT i o B

N

NACA Technical Memorandum No. 1035 11

hence the resonance:

2
q = o (7)
ma .

Then assume that mass m, exécutes a positive vibratory
motion &, Sin Wt of. amplitude &, and freguency .
Which is the motion &and which ‘the reaction of the pendulum
mass on my; &and hence on the system?

Since no damping acts at mz it swings in the same
phase a8 m, otherwise no force egquilibrium would be pos-
sible. The same was the case illustrated in figure 5.

The simple force diagram for the present case is shown in
figure 11. ‘

The equilibriﬁm condition for my, gives

2
co 2 (ap - ay)

= mzaa(t)
8y - 8, wh/QQ /,p\a
aa - Co/mg _\\a/
ap l Do
2y = 22 (8)
a1 1 - (p7-q)b C‘O]_
and for the relative deflection b = a, - 2,
S =| > L (9)
e R T
For the resonance tuning g = p, there is obtained
8, = b= if a; £0
The reaction on the system then consists of é force
W 8in wt which follows from the diagram at
' .2 2
W = mya,0 + ep Q (a, - a;)
. 2 .2
= mlalm + mgaew
| m 2 - 2
W = <m1 + ___.._a___._.;.> a1 |= M a1 ® (10)
1~ (p/q) .
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.

This force can be regarded as mass force caused by a
mass8 M at point O of the amount of

m,
M= m, + ey | = M, + Mg (11)
1~ (p/a) _

With this substitute mass affixed to the system, the total
effect of the pendulum mass on the system is defined for
a given mode of excitation. Here also the pendulum mass
merely affects the naturel vibration, that is, as regards
frequency and mode of vibration. The substitute mass con-

sists of a constant portion M, = m  and a portion
ma
Ma = 3 varying with the tuning of the pendulum
1 - (p/q)
mass,
It is
b
B ay a3
Mg
Figure 12 shows - plotted against p/q, concurrently
a, "
with = and — in function of p/q.
a, a4
For tuning near p/g = 1 the substitute mass M,

and hence the reaction of the pendulum mass on the system

is very sensitive to small variatiomns in tuning.¥ Any

strong effect on the system by small pendulum mass is on

the whole confined to the range of p/q = 0.9 %o p/q = 1.1,
that is, the practical range mostly.

The mass M, can assume any value between +® and -~
with exception of the small range of M, =0 to Mz = m;.

For g = py, ¥ = ». That is, this tuning acts for the
related order exactly as an infinitely large flywheel
(dynamie flywheel) attached at point O. The deflections
at the particular point thus become zero, and a node results.
But the deflections of the rest of the system are not re-
moved by it. The reaction of %he pendulum mass in this
case consists of the force

*The effect of certain "corrections" to resonant tuning,
established by experiment with which Salomon obtained for
certain cases "the best results" by trial,is probably also
traceable to it.
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2
Y = m, ael.w P
or o _
W = f(".'l2 Pt W . (12)

A deflection D! will result such that the reaction exact-

Ay reaches the value necessary for maintaining the vibra-
tion node. From it the relative deflection can be calcu-

lated. In a one-mase system the reaction is equal to -the
excitation W = P acting on the mass.

For p/g > 1, Mn becomes negative! The reaction
then corresponds in its phase to a spring force acting
contrary .to the mass force, that is, to a substitute spring
in a certain degree. But the amount of the reaction grows
like a mass force with the square of the frequency. The
pendulum mass here 8wings opposite to the mass of the sys-
tem. Through this tuning, which results in a aegstive sub-
stitute mass, the natural frequency of the systcm can be
raiscd, a possibility of extreme importance in practice.
While the lowering of the natural freguconcy of a system is
usually accomplished very casily by cmployins; edditional
masses, the oppOS1te case, the raising of the natural fre-
quency is often Deset W1th difficulties because a reduction
in the available masses or a.58tiffening of the shaft system
is not always possible. Here the pvandulum mass with thls
tuning eguivalent to & substitute spring constitutes a very
practical means. The effect is, of course, for the present.
restricted to a given mode. -

For the mathematical prediction of the natural frequen-
cies, by Gimbel's method, for instance, the negative substi-
tute mass enters the calculation as negative quantity, which
in nowise affects the calculation process and affords a
clear representation.

The relations are predicated on a frictionless motion
of the pendulum mass, By a small dampiang of the pendulun
mass motion, the substitute mass in resonance will probably
reach a very high value, but not as great as o+ Assuming
the damping force of the pendulum mass at k, 0° b, thet is,
proportional to the deflection and to the bearing lond due
to" centrifugal force, the substitute mass M, becomcs, (as
shown in appcndlx 4):

a8\ <
[, _.P >
/ \1 - EE + %o
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if 2z, = ¥s is the proportionate damping. The change in

c
sign is ef%ected through the phase change. At resonant

tuning, M, = %i. With & 0.1 percent damping, which may
be assumed for g rolling resistance -in order of magnitude,
the substitute mass would in this instance become 1000
times as great as the actual mass. In its reaction on the
system, this mass should differ very little from an o size
mass (fig. 13). Since only rolling friction is involved
in practical pendulum masses and the roller tracks them-
selves are hardened for this purpose, the damping is very
small. It is therefore disregarded and the subsequent
study continued on the basis of frictionless motion.

Since the choice of tuning makes it possible to accord
almost any positive or negative value to the substitute
mass, the natural frequencies for a given mode can be ma-
nipulated within very wide limits. The natural freguency
of a multimass System approximating a six-cylinder engine
with flywheel for different values of substitute mass M
is shown in figure 13. The fundamental frequency without
substitute mass, put at we = 1, can be varied through M
within the limits of about we = 0.23 and 23.06, that is,
across the wide range of about 1:9. The natural frequency
approaches the limits asymptotically and on exceeding them,
changes to the natural frequencies of 2 different degree,
that is, with more or less nodes. In the transitional
points a node is formed in the place of the pendulum mass.
The higher natural frequencies are, of course, simultane-
ously affected by the mass M.

Summing up, it is found that with the pendulum mass
for a given mode it is possible to

1. Apply, to a certain degree, an infinitely great
mass at a point which reduces the deflections
to zero,

2. Reduce an existing great mass to zero,
4. Provide any large positive or negative masses,

In this way, critical resonance zones can be consideradly
displaced if .it is deemed desirable and shifted outside of
the operating range under certain certain conditions. But
the change in natural frequency likewise changes the mode
of the natural fregquency, hence also affects the excitae-
tion and damping of the system. So, for instance, it is
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possible to manipulate the vibration mode of a power plant
in such a way that certain vibrations in cylinders cancel
each other and no vibration from this source develops. By
changing the mode of vibration of the power plant 5T a
ship the proportionate deflections of the propeller can be
increased and so the great damping of the propeller can be
utilized to better advantage. Or an elastic coupling
could be utilized more for damping by increasing its pro-
portionate relative deflections, By fitting an o SsSize
dynamic flywheel to a multicylinder engine, thé transfer
of vibrations from the engine on the driven side (such as
generator, propeller) can be eliminated for a given mode.
This applies in particular also to the case vhers a node
already exists without flywheel and the pendulum mass can-
not influence the natural freguency at all. It is a known
fact that on a large flywheel located in the node of a vi-
bration, the resonance deflections on either side of the
flywheel differ considerably from the natural vibration
mode.,

In the event that several harmonic excitatioms of
different modes act on the system simultaneously, or a
periodic force is involved, every mode must bte analyzed
by itself. The tuning and the substitutc mass of the pon-
dulum mass is defined for each mode and with this the nat-
ural vibration of the system computed. '

If the system is provided with several pendulum
massesS which may be disposed at one or various points and
with different tuning, each pendulum mass for a given mode
can be replaced by its substitute mass. A mutusl disturbd-
ance of the pendulum masses in their behavior is not vossi-
ble. With these different substitute masses the natural
vibrations are computed for one mode and then repeated for
others. Ordinarily the number of dangerous modes is few.

The avplication of several pendulum masses makes it
possible to manipulate several resonances as to position
and intensity and so to eliminate under certain conditions
all critical zones within the operating range. ©No gemneral
rules can be given; each vibration system must be treated
according to its own particular nature.
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V. FUNDAMENTAL FORMS OF ROTATING PENDULUM MASSES

) So far, a point-pendulum mass, a mathematical pendu-
lum, had been assumed. In the following various practi-
cal design versions of pendulum masses are analyzed with
regard to their

1. Tuning
2. Reaction to the system or substitute system, and
3. Belative deflections

The knowledge of the relative deflections is neces-
sary for the cholice of size of the pendulum mass, for the
disposition of stops and for an estimate of the extent to
which the theoretical study retains its validity for the
actual deflections.

Subsequent to having established their tuning q all
pendulum masses are reduced to the substitute system of
figure 10, the equations of which are used for the study
and which read as follows:

the reaction W =M a1w° whereby = (10)
m
the substitute mass | M = m; + 2 = {11)
1 - (p/a)
the relative deflections | ¥ = 2 = 1 = (9)
®1  ay, f(a/p)® -1
for the resonant tuning q = p there ig obtained
a =0 M= o
1
and the reaction in this case
2
W=m_bd'w = (12)

2

1. Mathematical Pendulum

Supposing the pendulum illustrated in figures 2 and
3 has the mass mgy and is attached to a massless disk
(@=m= O).
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. From the equality of the restoring force and the mass
force the tuning follows. at.

T mglr +:S)Q%Q(é = ¥) =mawlr + 5) Weo

with € - Y=y X
a .
NG
PDeo? = L
Y / s
hence . ge = 2 = (1)
g
The substitute mass at lever arm R = r 4+ 8 follows
according to equation (11), whereby m, = 0 and m_ = mg,
at ) '
| M= ___ "o _ ’ (13)
I 1 - (p/a)?

The angular deflection € of the vendvlum mass about its
point of suspension 0O' at a deflection of the svs-
tem about O follows from

1

. S _
: 0y (a/p)2 - 1
with € =\ rrs. V(a2 + 1) becomes
S .
2 .
+
Ef—= . 1 (12)
T (q/p)® -1

For the resonant tuning g = p, 0y becomes O and ¢
for the present, indeterminate." Under a force W acting
on the system (disk) in O at lever arm R, € assumes
& value €', secured from equation (12)

W

n, V' R
el = X (q2 + 1)
mg R w®




18 NACA Technical Memorandum No. 1035

or et = ——H , X .. (15)

The formula indicates that ®w' 1is so much smaller by
equal force W as the speed of rotation 1s greater.

2. Design Version Wright (fig. 14)

This pendulous counterweight used by the Wright company
in its radial engine is roller supported at two pivot points
by two pins, If the disk is held stationary the mass can
execute only a pure disvlacément motion, each point describ-—
ing a circle of radius s = 4, — d,, where d, 1is the hole
diameter, d; the pin diameter, The pendulum mass can, in
this case, be replaced by a mass point in 5, which is pen-
dulously linked in O' and dynamically corresponds to the
previously investigated mathematical pendulum. Its tuning
is therefore also

- T -
qa—g = (1)

If the disk itself performs a rotary motion, the pendulum
mass executes llkewise a rotary motion of the same amount
when point § 1s held statlonary. Its moment of inertia
about S must therefore be added to the system. Hence
with m, as the mass and mo 1% as the inertia moment of
the pendulum mass about its point S (i — arm of inertia),
the substitute mass 1is

M=M1+Ma

" <1>3 v Do (16)
= m4 — —_—————
\& 1 - (p/a)®

referred to the lever arm R = r + s. The mass of the
pin can be disregarded.

The values for the relative deflections are the same
as for the mathematical pendulum

€ q® + 1

= (14)

P (Q./P)z -1

and the resonant tuning q = p
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W
€l = ————— 5 = (15)
m, r Q

as before.

The wright design has the great advantage of involv-—-
ing rolling friction only, The reactive forces 1In the
bearings always pass perpendicularly through the contact
point of the bearing surfaces so that no sllding can occur
even at large vibratory deflectlons ¢. A further advan-
tage is that the tuning can be made as high as considered
desirable since s can be made arbitrarily small (in con-
trast to the material pendulum).

3. Material Pendulum .

Let the pendulum, iliustrated in flgure 15, have the
mass ®m, and a moment of inertia m, 1® about its point S,
A body, by its linear motion, can be represeanted dynamically
by two mass points having the same point S, the same total
mass, and the same moment of inertia. The pendulum is ac-
cordingly replaced by two mass points m, and m, of which

m; is located in the pivot point OF.

When s!' 1is the distance of mass my, from O!', the
conditions

my, 8 = my (s! - s)
my; + my = mg
2 2
mis. + mp(s' - s) = my i
fford
attor . m, = Do -
st = s[1+ (i/s) ] 1+ (s/1)” (17)
m
My = o)
1+ (i/s)”
s' corresponds, moreover to the reduced pendulum length

of a material pendulum.

Herewith the pendulum mass is reduced to a mathemat-
ical pendulum m, the length of which is s!' and to an
additional mass m,; rigidly connected with the system.
The tuning is
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q® = I = (18)
s!
I3 )

and the substitute hmass on lever atm = r + st = 1r 4+ s + iz

S
) ? < ) - (z/q) e e

m, and m, “to be'domputed according tq (17). It is to

be noted that the reduction involves lever zrm . R = r + g!
rather than R = r + s. The relative- dc¢¢ectlans € are, .
as on the mathematical pendulum:
. 2 - -
_g_.': q'+J- -3 5(14)
2
P1 (q/p)” -1 :
for gq = P _e:_'=.___.ji__n_(q2+l)
ms, B W
or
¢! = w = (20)
ny r Q

For the practical application the material pendulum
has the disadvantage of attendant sliding motion in the
bearing and the impossibility of tuning the pendulunm to
high frequencies since s'!' cannot be construected below
a given value. It always is

st 2 2 i
|

4, Roller According to Salomon

a) Outside roller. This pendulum mass (fig. 16) is
formed by a ring which unrolls on a fixed pin, distance r
from the axis of rotation. The outside roller is there-
fore not pivotally mounted in a point O! but roller sup-
ported on a pin. The pin has a radius p1, the inside
roller track of the ring the radius py, a mass mgy and
an inertia moment my i® (fig. 17). The pendulum mass is
again replaced by two mass points, of which m, is placed
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.in the point X, the contact point between pin and ring

in equilibrium position of the ring; X forms the momen-
tary center of the motion for small deflections, Dbut the
center of the path of the centroid is 01, It is

m; = Zo My = Zo (21)

1+ (pp/1)° L1+ (1/92)2

and the distance m; from §

The mass m; must here also be added to the mass of the
system as 1t joins in its motion. But now mass m, can
no longer be regarded as self-contained mathematical pen-
dulum subjected to the centrifugal force since m; does
not form the point of suspension for m,. At deflections
of the pendulum mass, the point of support shifts toward
contact point Y so that the centrifugal force of mass m,
then contributes also to the restoring forces of mass m,.

When the system executes no vibratory motion (wl = 0)
the pendulum mass is subjectcd to the effect of three
forces: the centrifugal force in the center of mass 8§,
the mass force of the vibratory motion in m,, and the
bearing reaction due o Y, which must be in equilibrium
with each other. The bearing reaction must accordingly
pass through the point of intersection Z of mass force
and centrifugal force. :

The equilibrium in point 2 demands

o

FYsmgbd wg,

which corresponds to the equation: restoring force = mass
force.

The gquantities ¥ and b can be secured from geomet-—
rical relations, after which the insertion of all the
values .(cf. appendix 5) affords .

r a

wa = Q
s[1 + (i/pg)™]
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and consequently

q? = S ' (22)
. . 2
s[1 + (i/p2)~] J
The substitute mass at lever arm R = r + s + u =

12
r + s + — ig -~ - - -
. Pz .-

o

M = m1<r ;.9.1:>Q + my (_23)
: 1 - (p/)® |

m, and mp’ béing"bb%aﬁnéﬁ from equation- (21).

The relative deflections for my,; are again

Vo 1
T (qfp) -1

. - The relation between W and ¢ affords (¢cf. appen-
dix 5)

R
€ = == 2
. = a° Vv
with
; 5
R=7r 4+ s + 1
P=
. hence y 5
Jr a” .
Eo‘e— L N\® (24)
1 (g/p)” =1
-at resomance q = p
Wt o= W _
m, R W
therefore
W
et = S = (20)
m, v Q

According to figure 17, the bearing reaction in Y 1is not
perpendicular to the contact area but inclined at .an angle
v to the normal. At large deflections, therefore, a
sliding can occur which must be avoided here under all
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circuﬁstancéé. At the high bearing pressures and rapld
oscillations, such sliding at this point cannot be con-~
trolled by lubricating technigue.

Angle 1, which must always be smaller than the an-
gle of friction and which is composed of the angle 103
plotted in figure 17 and an angle n, conditioned by the
vibratory motion of m,, follows from gcometrical rela-
tions (cf. appendix 6) at

_p2 (r - )P - T
(r + s) (1 + paa/iz)

(25)

wherein either o, or ¢ could be posted according to
equation (24).

At resonance q = p for o, =0

€' r 4+ s 1+ (pg/i)2

2) Inside roller.- For the inside roller of figure 18
where one roller can swing within a hole, the geometrical
proportions are represented in figure 19. The notation is
the same as in figure 17. The derivation is the same as
for the outside roller. However, the rslations for the
inside roller sare obtained from those for the outside roll-
er by simply posting ¢, and pz negative in coaformity
with the geometrical inversion.

Tuning and relative deflections remain unaltered.

2
N

The substitute mass at lever arm R =r + g§ - %— is
. = . . : 2
+ a -
¥ = m, (3___e;> ... S (27)
R 1 - (p/q)
and 1

=P2 (r+pl) Cpl-rE
(r + s)(L 4+ p,°/1%)

(28)

n‘/g' remains unchanged.

The cited equations (22) and (20) for the tuning and
the deflection €' at resonance are in agreement with
those obtained by Salomon by a different method.
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5. Pendulum Mass with Two Degrees of Freedom

All the pendulum masses discussed so far had, in
comparison with the system, only one degree of freedom,
if the possibility of lifting from the suppori, prevented
by the centrifugal forces, is discounted. Figure 20
shows a pendulum mass with two degrees of frecdom. It
comprises a pendulum mass of the Wright type with one of
the supports omitted, or of Salomon's outside roller with
the support pin itself mounted on rollers.

Since the pendulum mass has two dezrees of freedon,
it is to be expected that it will also have two different
natural frequencies and two different tunings. In con-
saquence it should be possible with such a pendulum mass
to manipulate two diffcerent modes simultaneously.

Figures 20 and 21 show the mass at the instant of
maxinum deflection. Tho mass may be visualized as having
been put in this position by giving it, first, a2 displace-
ment (similar to Wright), at which point § makes an an-
gular deflection ¢ about O!' (0!, O" and S then still
lie on a straight line); then the mass is slightly rolled
on the stationary pin, the § point making an angular de-
flection & about O" (8 does not correspond to the an-
gle of rotation). The position of the mass is defined by
€ and §. The conversion in the position €, 8§, on the
other hand, however, corresponds to a temporarily inde-
terminate point X on the axis 00!, with distance of,
say, Xs = v. Then the pendulum mass is again replaced
by two mass points m; and mn,, the first, m; being lo-
cated in X. The pin p; 1is assuned to be massless.

¥How there are three forces acting on the pendulum
mass, the centrifugal force in S, the mass force in o,
and thc bearding reaction which passes through the contact
points YY'! of the pin, since the pin is masslcss. EBgui-
librium 1s possiblé only when the beoaring reaction passcs
through the interscction 2 of the two other forces.
This condition lecads, by reason of the gcomotricol rela-
tions (appendix 7), to the unshortened aguation

(e+ 8/2) 8/2 /i\° _«r
(e+ 8/2) 8/2 \pl/} T 4+ s

which can be satisfied for any given volues of i, Pr T,
and s only when either
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i
8
o
1]
o

‘I|{8 =0 " | then I|v

or IT |86 = =2¢ or II|{iv =0, u=o

This means that the mass executes -either a displace-—
ment motion (v ==) or a rotary motion about S. These
are the two possible states of vibratlon of the mass,
They are 1illustrated in figure 22. ‘

In the first instance the mass moves exactly like
Wright's pendulum mass and all of Wright's formulas for g,
M, ¢, and so forth, hold true, including, in particular,

q® = L | =(1)

In the second case the tuning follows from the moment

equilibrium about 8, restoring force = mass force,
2 2
Fo;e=mn 1 aw
0
or
( o% 17 2o°
m r + s p € = W e — W
° ° Pi1
<2 r\ pl = l
= 4+ - —
at a5 <1 . T > ' (29)
]
For the substitute mass at distance K = r + s there 1is
obtained
m;, = mg in S

2
and my = 0 in o; whereas the moment of inertia m, 1

is therefore 5
m. (1/R) .
M1 = mg + ——> . (30)
l— ~
(p/a ;)
with Vo= e
P1
equation (9) gives the relative deflections at
€
II s
= pl/ﬁ and 8§ = -2 ¢ (31)
?1 (a Y% -1
11/p
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€z1' for the.resgnant tuning can here also be derived
from equation (12), but it is simpler obtidined from figure
22, where the reaction consists of the moment

mo(r+S)Qapl€-'=W(r+s)
whence
et = Y (32)
me py Q g

FPor the case of
"
1+_S_\k.p_._].'.‘ = 1
\ r/ \1/
there is obtained
9y = 911

The pendulum mass with two degrees of freedom, which
like the Wright version and Salomon's roller possesses
only rolling friction can be tuned simultaneously to two

different modes or orders.

Figure 23 is a design sketch for the simultaneous
disvosition of four such pendulum masses. This device
flanged to the shaft can be tuned to four different modes
simultaneously 1f the vendulum masses facing each other
are designed in pairs as in the sketch; if the opposite
masses are designed dissimilar, theoretically, a device
with eight different modes of tuning simultaneously is
possible. The springs serve to keep the masses in their
position when at rest. Because of their smallness their
restoring force is secondary, The term damper is purpose—
ly avoided for such a device which in a way operates as
frequency transformer,

Eventually, existing counterweights could likewlse
be designed with advantage as pendulum masses.

6. Compilation of Formulas and General Remarks.
The table in the appendix contalins all the data cof

interest for the aforementioned types of pendulum masses.
Other possible types are not discussed here. They can
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be‘analyzed in the same manner by substituting two mass
points, one of which is placed in the fictitious point of
rotation of the vibratory motion. If the tuning ;t a ven-
dulum mass is to be ascertained only, this can usually_be
obtained in simpler manner. In such a case only the cen-
ter of gravity of the body is considered, and the actual
centrifugal force is allowed to act on a fictitious mass
having the same kinetic energy as the pendulum body. On

rollers, for instance, this mass is mo<l + %5:> where . |

is the distance of the center of mass from the point of.
support.

One instance of pendulum mass of the Salomon type
concerns the case where the ecenter of mass does not"coin—
cide with the center of its path of rolling. In this in-
stance the tuning is )

P
a? = —Lts gy b, PP (33)
t<l+i§> TYTES e - pa) :

whereby 1 = s + p,.

For 1 =p, or ps —p; = s the formula changes to

" the equation (22) Tor the concentric roller. With p, = O
or pz = s the formula (18) for the material pendulum is

obtained. '

" The design of a pendulum mass 1s above all predicated
on the knowledge of the relative deflections ¢ to be
expected 'and the angle of inclinatlon n, " The magnitude
of the pendulum mass is governed by it. The greater the
permitted deflections the smaller the pendulum mass itself
can be chosen, For large deflections ¢ the mathematical
assumptions are no longer fulfilled so that the pendulum
mass has, under certain conditions, a tuning other thanm
intended, ©Salomon quotes ¢ = 15° as upper 1limit value.
Experience must decide it. For a nine—cyllinder radial ’
engine this deflectlon on a pendulum mass of the Wright
type would only amount to about 6° with mo/m = 1/5, and
that is for the worst case that the main critical lies
at full throttle speed of rotation.

The angle -of inclination n that arises on certain
pendulum masses must always be ‘smaller than the angle of
friction in order to positively avoid sliding, In the
extreme case, 0.1 eguivalent to an angle of 6° might bYe
permitted.
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VI, SUMMARY

. The rotating pendulum mass subgected ‘ta’ Centrifugesl
force corresponds in its effect to a mass elastically
combined with the system, whereby the spring stiffness is
dependent on the rotative speed.

The resonant vibrations of a one—mass system eéxcited
by a periodic force of given mode can be completely re—
moved by a pendulum mass tuned exactly to resonance. If
the pendulum mass 1s not tuned to resonance the natursl
frequency of the system of the particular mode can be ma—
nipulated and shifted within any limits upward 6r down-—
ward. If several modes of the exciting force exist simul-—
taneously the system attains through the pendulum mass a
different natural frequency for each mode. The individual
resonance curves -of the different modes are superimposed

1

und1sturbe&1y. T o t -
For the general case of an arbitrary multimass systenmn,
the reaction of any arbitrarily tuned pendulun mass dis—
posed at some point for a given mode of .excitation can be
best described by a sutstitute mass rigidly connected to
the sSystem at the particular point.- By appropriate tuning
of the pendulum mass this substitute mass:can.be accorded
pnv arbitrarlly great value of any prefix.. In this manner
the natural frequency of the system for the particular or-—
der can be shifted within wide limits, '

. An infinitely great substitute mass can. be provided
and_ a node imposed at the particular point of. the oscilla—
tion. ‘An already existing mass can be cancelled in its
,_effect In particular, it is possible to raise the natural
frequency'of the system by an equivalent substitute mass
"of mnegative sign which acts as a spring.. This .possibility
.0of raising the natural frequency is of particular value
becaugse no other means -to accomplish it are known. With
the natural frequeney, the vibratién mode is also affected
by the substitute mass and hence the .excitation and damp-—
ing of the system, : :

In the event that several excitations of different
modes exist, the substitute mass for each mode gets a dif-
ferent value; hence the system a different natural fre-
guency for each mode. The individuval vibrations are un—
disturbedly superimposed. .
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With multi-pendulum masses each mass becomes fully

“effective without possible mutunal interference. ZEach

pendulum mass is replaceable by its substitute mass.

-NOTATION

- ' .
Mass kg cm s~ or kg_g_l
T o cm
@' -
@, n = — moment of inertia of the mass of the systenm,
R and the mass reduced to lever arm R,
respectively

m, mass of pendulum

m, 1 moment of lnertia of pendulum about its
center of gravity

m,,my dynamically equivalent substitute mass points
of the pendulum

M =M, + M; dynamically equivalent substitute mass of
the pendulum at lever arm R

-
Spring constants — damping constants kg cm and gg]
v cm |
C,c = 5% spring constant of one_mass system for the
R torsional vibration and for the longitu-—
dinal vibration at lever arm R, respectively

k dampling constant of the damping force of the
one—mass systemnm propobtioﬂal to the deflection
Co Q spring constant of the substltute svstem of the
) pendulum mass

Deflections [cm]
p,a = @R vivratory deflection of the mass of the system

Posty = ¢OR deflection of the p&int—pendulum mass

Vv, b

YR relative deflection of point-pendulum mass
with respect to the system
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-

= CPIR - 3 o ) -
) }- . deflections of substitute masses m,- and my
(92-9«2 = chR ' ’

P x-%)

€ relative deflection of center of mass of wnen—
dulum about its path center (suspension
point on simple pendulum)

n angle of inclination of support force with
respect to the normal of the contact surface

]

a |+

static deflection of the system due to force P

8g5¢
at lever arm R

a', bt ,yt,e?,n' denote the corresponding values for the spe-—
cific case of resonaht tuning gq = p

Natural freguencies [1/s]

Q rate of rotation, angular velocity of rotatory
motion -

w frequency of the exciting force P

We natural frequency of the svstem without pendu—

lum mass

'

Weo natural frequency of the pendulum mass relative
to the hypothetical static system ’

P sin wt exciting force at lever arm R-

8 *  phase of the exciting force relative to the
vibration of the system

F centrifugal force in fhe center of gravity of
the pendulum mass -

W sin wt reaction of the pendulum mess on the system
at lever arm R

Degsign dimensions tcm]

r = 00! distance of the axis of_fbfétion from the
point of suspension, or path center S
of the pendulum mass
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s = 0'S distance of the center of gravity, respectively,
of the suspension point or S—path center of
the pendulum mass (= length of pendulum of
the mathematical pendulum)
P1 radius of roller path of the disk combined
with the system
P2 radius of roller path of the pendulum mass
Ratins
z = & damping of the one—mass system, ratio of damp—
¢ ing force to spring force; the logarithmic
decrement is then 3 = 1 2
q = 289 tuning of pendulum mass, the ratio of its nat—
Q ural frequency to the rotative speed
P = 2 mode of excitation, ratio of exciter freguency
Q to speed of rotation
vV = 2 magnification of the deflections of the system
Gst
Wote: The bracketed dimensions refer, respectively,

to thg_gaantities of the torsional vibration and the cor-
responding quantities of the longitudinal vibration at
lever arm, R.




Coordination of Formulas

S£01°ON UMpuUBIOWAN TEBOTUYO3J YOVN

Mathemat. Wright material Outside roller Tnside roller Roller with 2 degrees of freedom
pendulum version pendulum Salomon Salomon Casel Casell
Fig.| 2and 3 14 15 16 and 17 18 and 19 20, 21 and 22 20, 21 and 22
r r r 1
I r — Ay &V R I 1+1) (&
¢ s s s(l-l—%) s(l-}—?";) s(l+?:’—) s ( +8)(l)
my iy my r\s m r—o m rt+a\ my RAY my my (i R)?
M 1—(p/g)* m'(ﬁ) + T—(p/g? | ™ (f) +1—(;/q)' m‘( R ) + 1—(;/q)’ m‘( R ) T T—(pig | ™ (R) + 1—(p/g)* "ot T (plaR
] s 3
R rts r+s r4s+4+— rt+st+— rts—— rts r-ts
8 (4 02
me Wil . ) .
_— J— ] A H —_ —_—
- S| S| e
mo' 1 '—‘L'f e, 0]
me —_— —_ _l:_ L —1_— —_ J—
1+(’) l+(Ql) 1+(Ql)
R R
£ ¢+1 ¢#+1 F£+1 - -4 ¢*+1 o1/s
o | lep)r—1 (¢/p)2—1 (¢/p)*—1 =1 =1 (¢/p)*—1 (g/p—1
, w w w w w w w
€ my rQt myr mgr£2* my r 3 myr mg r £ my p, 2%
p'(r—ei) f—re prirte)e—re :
L ° - (o) (145 ol (14+25) ° ‘
r g r ¢
v - 0 — TFs 1+ 0 -4

2%
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APPENDIX 1

The force acting on M, 1in direction of the vibra-
tion (tangential), (fig. 3) is

Fo(e-1) =FES‘-W .

At O' the force F cos (€ — V) ®=F has a tsngential
component F ¢, which yields on m a force

]
m

|
|
H
|

|
i
b=
I}

1\

Hence the two forces at my and m act like a spring

stretched between the two masses.

AFPENDIX 2

2 ,22
= {
my a, w Cqy b b
2 2
ca = P cos B + c, Q b+ maw
ka = P sin B

From the first egquation

b m. w= 22
ag a + b cg a° q®
L o 1
a (a/p)® -1
entered in the second equation
- C = Cq Qa
Pcos B==c¢a Ll - ° S }
c o [a/p)® — 11]
X 2 a 2
with e = m w, and ey 2 = m, wg,




34 NACA Technical Memorandum Neo., 1035

P cos B c a [ R . ] <w90> :l
- (q./p)2

E —< > ( m 1 -l<p/q)2>]

This equation and “the third squared and added affords

or P cos B

il
o)
)

2
P2 = ¢® a®[—— + k® a®

whence

P/ec
KO

which with the notation gives the previously cited equa-—
tion for V.

For the case without damping, z = 0, there is obtained

1—( ><1+—;n—1— (;/q)2>

Taylor 's equation reduced to the same notation and the
one—mass system read on the contrary

! ~< > ( n [1 - (p/q)ll (q 2+ 1)>

hence differs by the factor (q + 1), which is due to the
erroneous premise,

V*

APPENDIX 3
0
For 2. gives LI
a a 0
b Dby gives with p/q = 1
a

gt



w‘m‘f@

NACA .Technical Memorandum:No. 1035 35
o . b_ . 1
ast [/ >° m,
\\we m
or with agy = P/c and weg = %
b = __2_5
m, @

APPENDIX 4

The force diagram of figure 11 changes in this instance
into that of figure 24, where the mass force in mp is

vectorially divided along a; and b, The equilibrium
gives

my a,; w? cos B = cg (3 b — mz b w? l

my a; w2 sin F =k, Q b l

squared and added

. 2. 2 a

(mgp a, wg)a = (c, Q b)el—<1 - EE—BE> + <E?___9,J> ‘I
[
-
]

l
—
Q
o)
0
o'

The reaction of my is W =¢cqo 2 D or

Mg a; UJa

2
/<l —_ 2.2_\' + 202

q =/

which,strictly speaking, may no longer be regarded as mass

= force since it does not fall in the direction of a;.
For small damping valuwes 2, the directional departure is,
however, small with excevtion of gqfp = 1.

The damping force put at IQ,ng is rather indevpend-
ent of the deflection by purely rolling resistance.
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APPENDIX S
Figure 17 affords
¥ (pa + u) = (e = 8)py
and e s = L(r + s)
or €_§=£§
s
ie
ith u = =-
v P2
t
¢
becomes Y = L o )
s
1+<_L.
. P=
further b = (pp + u)a
and ’ a pp = (r + s) L
-
hence b = (r + s)il + —i—> ¢
pz®

Y, b as well as F and mz; posted in the equation

FY =mpgb wggo?

and abbreviated gives equation (22).

It is YR = o (p2 + u)
a pp = €s
R
whence € = EE —————

but



k>3]

. o~
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APPENDIX 6

Figure 17 affords
Nz p2 =Y u

2

i
Mg = —== ¥
pa®
and appendix 5
Y = r -.---g-__.-..
5 3
1l + I
p=?
with £ = e Z e €
T + 8
Y = -F £
r + s 1 + (i/pe)z
hence Mg = EL

(r + 8)(1 + ps2/1%)

The mass force m,(r — p1) @1 w® together with the support
force T (small angles!) produces

my (F - py) @, w?
ny = >
mg (r + s) Q
2
r -—
or n, ( Pl) P CP;
(r + s)(1 + 835
n=1n, —ng -gives-equation (25). (Sign not of interest!)

APPENDIX 7

The mass of the pendulum is subjected to a displace—
ment of the S—point by s(e¢ + 8§/2) and a rotation through

S = which must be equal to the angle a. Whence

2 pa
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s (€ + 8f2) ._ 0 e + 5/2
= p, —-2
a 8§/2

v

and eonsequently
i 2 2
w=4- -1 _8/2
v pr €+ 8/2

For angle Y %between centrifugal force and bearing
force, the triangle 00' 8§ - whereby O0' 8 // YY' —

Y = ¢+ 8/2 ¢

aff ords (r + s) = s (e + 8/2)

hence Y = - X~ (e+ 8/2)

r + s

In order that the point of intersection 2 1lie at
distance u from §,

it must uY = p, 8/2
1 §/2
17 _ 8/ r (e + 8/2) = p, 8/2
that s (e+ /2182 _ /N7 _r
(¢ + 8/2)8/2 WPyor e s

&
Therefrom fellow the further conclusions of the main
text!

Translation by J Vanier,
National Advisory Committee
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Figure 4.~ Substitute system for

figure 1.

Figs. 1,4,6,7

Figure l.~ Vibration damper
(XKutzbach typs).
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Figure 6.~ Natural frequency of one-mass system by different tuning

of pendulum mass,

Without pendulum mass g=0
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Figure 7.~ Resonance curves of onc-mass gystem by different tuning
of pendulum mass.
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Figure &.- Single-link vibration

Figs. 2,3,5,9,10,11,12

system with a pendulumFigure 3.- Reduced system.

mass.

Figure 5.- Force diagram of Figure 9.- Some vibratory

substitute system.
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Figure 10.- Substitute system ,

for the

mass of Figure 9

pendulum %4,
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Figure 12.- Substitute mass
and deflections -#

by different tuning of

pendulum mass.
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system

with a pendulum mass.
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Figure 11.- Force diagram of
the pendulum mass.
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Without pendulum mass

i

Figs. 8,13,24

1000 1500
1
Without pendulum mass
3 q=2
n;,=1335
L~
500 1000 1500

rom

Figure 8.- Resonance curves of a single cylinder power plant with and
without pendulum mass.
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Figure 13.- Natural frequency of a multi-mass system for different
values of substitute mass M.
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Figure 24,- Diagram of the forces of the pendulum mass by small
natural damping.
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Figure 14.- Pendulum, Wright design
version.

Figure 17.- Geometrical Figure 16.- Salomon's
conditions on
Salomon's outer roller.
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Figure 15.- Material

Figs. 14,15,16,17
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Figure 18.- Salomon's inside roller.

X
Figure 19.- Geometrical
conditions on
Salomon's inside roller.

2 7
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Figure 20.- Pendulum mass with two
degrees of freedom.

Figure 21.- Geometrical conditions of
the pendulum mass with
two degrees of freedom.
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CC]S@ 7 Case /4

Figure 22.- The two possible natural vibrations of a
pendulum mass having two degrees of freedom.
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Figure 23.- Device with several pendulum masses of the type
of Figure 20.




